Hyperbolas

Vocabulary

Review

Write the equation of the vertical and horizontal asymptotes in each graph.

- **5.** A hyperbola is *not* a conic section.
- 6. A hyperbola has two vertices and two foci.

270

Problem 1 Writing and Graphing the Equation of a Hyperbola

Got lt? What is the standard-form equation of the hyperbola with the vertices $(0, \pm 4)$ and foci $(0, \pm 5)$?

- **7.** The vertices are $(0, \pm 4)$, so a =
- **8.** The foci are $(0, \pm 5)$. Then c =
- **9.** Use the values you found for *a* and *c* and $c^2 = a^2 + b^2$ to find *b*.

- **10.** The vertices and foci are on the *x*-axis / *y*-axis.
- **11.** The transverse axis of the hyperbola is horizontal / vertical.
- **12.** Complete the steps to find the standard form of the equation of the hyperbola.

Problem 2 Analyzing a Hyperbola From Its Equation

Got It? What are the vertices, foci, and asymptotes of the hyperbola with equation $9x^2 - 4y^2 = 36$? Sketch a graph. Use a graphing calculator to check your sketch.

13. Write the equation in standard form. Divide each side by the same number to get 1 on the right side.

14. Circle all statements that are *true* for this hyperbola.

The transverse axis is horizontal.	The transverse axis is vertical.
The vertices are on the <i>y</i> -axis.	The vertices are on the <i>x</i> -axis.
The foci are on the <i>y</i> -axis.	The foci are on the <i>x</i> -axis.

b =

- **15.** Use the standard form of the equation to identify the values of a^2 , a, b^2 , and b.
- $b^2 =$ **16.** Use the values you found for *a* and *b* and $c^2 = a^2 + b^2$ to find c^2 and *c*. $c^{2} =$ *c* =
- , 0) and the foci are $(\pm 0, 0)$. **17.** The vertices are (\pm

The slopes of the asymptotes are $m = \pm \frac{b}{a}$, so $m = \pm \frac{b}{a}$

The equations of the asymptote are $y = \pm$ x.

a =

 $a^2 =$

18. Plot the vertices and foci. Draw dashed lines for the asymptotes. Then sketch a graph the hyperbola.

272

19. Solve the equation for *y*.

20. Use your graphing calculator to graph the two equations you found in Exercise 19 on the same screen. Compare the graph on your screen to your sketch.

Lesson Check • Do you UNDERSTAND?

Error Analysis Your friend says that a graph must be a vertical hyperbola because the greater denominator is under the y^2 term. What error did your friend make?

21. Circle the equation that represents a vertical hyperbola. Underline the equation that represents a horizontal hyperbola

$$\frac{y^2}{36} - \frac{x^2}{9} = 1 \qquad \qquad \frac{x^2}{9} - \frac{y^2}{36} = 1$$

22. Name one way the two equations differ.

Math Success

Check off the vocabulary words that you understand.

hyperbola 🗌	🗌 focu	focus of the hyperbola			vertex	transverse axis	
Rate how well you can graph a hyperbola.							
Need to 0	2 4	6	8	10	Now I get it!		